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Abstract. Weshow that the temperature and frequencydependence of the Acsusceptibilities 
x ( o )  in the 2D and 3D C J Ising spin glasses (SGS) can be reproduced by a model based on the 
picture of motion in phase space as thermally activated hopping in an ultrametric space. The 
characteristic difference in the frequency dependence of Imx(w) in the 2D and 3D SGS, 
previously found by the Monte Carlo (MC) simulation. is reduced to a difference in a scaling 
of free-energy barriers with ultrametric distance. One assumption is needed to combine 
dynamics in an ultrametric space with a correlation function of the magnetization in the SGS. 
X(w)-values that were obtained previously by the MC simulation are reproduced based on 
ourassumption with better results than thoseofSibani. Furthertherelationobtained by the 
Lundgrennallm,y = - (x/Z)[d(Re,y)/d(Inw)] holdswithout takingaspeciallimitz- 1. 
where z is a branching ratio of the hierarchical structure. 

1. Introduction 

Recently AC susceptibilities x ( w )  and relaxation time distribution g(z) in the + I  Ising 
spin glasses (SGS) were calculated by Monte Carlo (MC) simulations, and characteristic 
differences were found in the two-dimensional (?D) and three-dimensional (3D) systems 
by Suzuki, Shirakura and Inawashiro (SSI) (1991). In this paper we intend to reproduce 
those behaviours by a model based on the picture of motion in phase space as thermally 
activated hopping in an ultrametric space. 

Since Mezard era! (1984) showed that many pure states in the mean-field SG (Sher- 
rington and Kirkpatrick 1975, Parisi 1980) are separated by free-energy barriersdefining 
an ultrametric topology, much research has been devoted to dynamics in an ultrametric 
space (Ogielski and Stein 1985, Bachas and Huberman 1987). However, there have 
been only a few investigations which make detailed comparisons between SG dynamics 
and the dynamics in an ultrametric space. Sibani (1987) intended to reproduce the 
temperature and frequency dependence of the AC susceptibility ~ ( w )  in a SG using 
the dynamics in an ultrametric space. Although he stated that his results and many 
experiments are in qualitatively good agreement, we suppose that there are many 
disagreements between them, even for qualitative behaviour. For example, the peak 
height of the imaginary part Im ~ ( w )  of the AC susceptibility given by Sibani increases 
with decreasing frequency w .  On the other hand, in man). experiments on SGS with a 
finite transition temperature (Gunnarsson el a1 1988) and in the MC simulation of the 
3~ 3- J king SG by SSI, the peak height of Im ~ ( w )  decreases with decreasing w. Also, as 
indicated by Sibani himself, the magnitude of [Im x(w)]/Re ~ ( w ) ]  in his results is larger 
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than that in many experimental results on SGS. Further the relation Im x(w) = ( -n/2) 
{d[Re x(w)J/d(ln U)} obtained by Lundgren, Svedlidh and Beckman (LSB) (1981) and 
observed in many experiments on SGS does not hold in his model, except for a special 
limit L + 1, where z is a branching ratio of the hierarchical structure. 

Wethinkthat anassumptionmadebySibani(1987)inordertocombinethedynamics 
in the ultrametric space with the correlation function C(t) of the magnetization in SGS is 
not appropriate. In this paper we present another assumption, On the basis of this 
assumption and the model presented by Ogielski and Stein (OS) (1985) with a fixed value 
of z = 2 in the ultrametric space, we show that %(U)- andg(r)-values in the ZD and 3D 
? J  king SGS can be reproduced, including even the difference in their characteristic 
features. 

In  section 2 we briefly describe the os model and present one assumption in order to 
combine the dynamics with C(t) in SGS. Then we derive expressions for ~ ( w )  and g(z). 
In section 3 these are calculated numerically and estimated analytically in three different 
cases, and the results are shown to resemble those of the experiments and the MC 
simulation. Section 4 contains a discussion. 

T Shirakura and S Inawashiro 

2. Model and dynamical physical quantities 

First we describe the os model defined in an ultrametricspace. The notation used in this 
paper is the same as in the work by os and by SSI. 

We consider the hierarchical structure of a branching ratio L = 2 (see figure 1 in the 
paper by os), The number of hierarchical levels is assumed to ben + 1. The 2" points on 
the top level are numbered as 0,1,2,  , . . , 2" - 1 and considered to correspond to 
metastable states in the high-temperature phase of the SG. The ultrametric distanced 
between two points is given by the number of branches that one must descend from the 
top level before the branches merge. Two points with the ultrametric distance d are 
supposed to be separated by the free-energy barrier Ad which is ranked so that 
A ,  < A 2 < .  . . < A " .  

This problem is formulated as a random walk on the top level points, Let the 
probability of the particle being found at site i at time f be given by f,(f); hence, 
2::;l P,(r) = 1. Further, let the probability per unit time of jumping an ultrametric 
distance of d be given by cd, d = 1,2, . , . , n. OS obtained a solution for P,(r) with the 
initial condition P,(O) = 1, f i ( 0 )  = 0 (i 2 l), and the average distance travelled in time 
rgiven by 

2 " - l  

(d(r)) = d(k, O)Pk(r) = n - 1 + 2-" - (1 - 2-m)  exp( -LJ) (1) 
k = O  m = l  

where 
n 

ak (2) ,I,,, = a ,  + 2 k - I  ah 
k = m  

and d(k, j )  is the ultametric distance between site k and site j .  Because a, = 2k-lck 
represents the probability per unit time of jumping to an): of the 2h-1 sites a distance k 
from a given starting site, we assume that a, = exp( - A k / T )  at temperature T. 

Next we combine the above results with dynamical physical quantities in a SG. We 
assume that the correlation function C(r) = [ (M(O)M(t))] , ,  of the magnetization in a SG 
decreases in proportion to the average distance (d(t)), i.e. 

C(t ) /N = 1 -(d(t))/(n - 1 + 2-")  (3) 
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Figure1.ReRandIm~versusT/3forcaseIwithA/J=0.014andw=2n/20(X),2n/200 
(A) and2~/2000(0): (a) n = 1000;(b)n = 14OOJ/(T - T,) where TJ3= 0.3. 

where N is a number of spins and the factor n - 1 + 2? is determined to ensure 
lime-% C(t) = 0. From (1) and (3), we obtain 

A relaxation time distributiong(r) is defined by 

CO) - = IoE d r  g( r )  exp ( - !). N 

Comparing (5) with (4), g ( r )  is given by 

The AC susceptibility ~ ( w )  is determined from g(r), as follows: 

The validity of assumption (3) will be discussed in section 4, compared with Sibani’s 
(1987) assumption. 

3. Results 

In thissection, we firstgive numerical resultsfort(w) and therelaxationtimedistribution 
g(logl0 r )  on a logarithmic scale (section 3.1). We consider three cases: case 1, Am = 
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W O  
Figure Z.d(log,, r)  versus log,, I for case I at  T/J = 2.3 (-). 1.9 (0). 1.5 (A) ,  1.3 ( X )  
andl . l  ( .  . . )wi thA/ l=O.O14andn= 14OOJ/(T- TJnhereT~/J=0.3,  

mA; case 11, A,,, = A In m ;  case 111, A,,, = "A., 0 < cr < 1. I n  case I, i ( w )  and the slow 
part of g(log,, T) in the 3D k J king SG can be reproduced. In case I11 with CY = 0.5, the 
values for the ?D i J Ising SG can be reproduced. The results for ease I1 resemble those 
obtained by Sibani (1987). In each case, analytic results for (6)  and (7) are also discussed 
(section 3.2). 

3. I .  Numerical results 

In the numerical calculation of i ( w ) ,  we fix the frequencies at w = 2n/20,2n/200 and 
2;c/2000. and we choose n = 100&2000. In the above three cases (I, I1 and IIl), A/Jwas 
chosen such that the temperatures at which Re i ( w )  exhibits a peak in the range 1 < T/ 
J < 2. 

3.1.1. Case I: A,,, = mA. i(w)-values for A/J = 0.014 are shown for n = 1000 and n = 
1400 J/(T - Tc) where Tc/J = 0.3 in figures l ( a )  and l(b), respectively. t ( w )  in figure 
l(b) resembles the i ( m )  obtained by ssI in the 3 0  Ising SG at the following points: at low 
temperatures, Imt(w) exhibitsno frequencydependenee and is proportional to T - T, 
where T, = 0.25 which is estimated from figure 2(b) of SSI. g(log,, r)-values for n = 
1400 J/(T - Tc) with T,/J = 0.3 are shown in figure 2 at several temperatures. These 
g(loglo T)-values are also similar to those for the 3D Ising SG, except for the fast parts of 
g(log10 z). 

3.1.2. Case 11: A,,, = A In m. f(w)-values for A/J = 1.5 are shown for n = 1000 and n = 
lO00J/T in figures 3ca) and 3(6). respectively. The difference between f ( w )  for n = 
1000 and n = 1000 J/T is small in this case. We see that the magnitude of (Im i(w)]/ 
[Ref(w)] is larger than the experimental values (see, e.g., Dekker et all989)  and the 
behaviour ofi(w) resembles that obtained by Sibani (1987). g(log,, z) versus log,, T for 
n = 1000 J/T is shown in figure 4. The peak of g(log,, T) is too sharp, compared with 
those of the slow parts of g(logl0 T) for the ?D Ising SG (see figure 6(a) of SSI). 

3.1.3. Carelll: A,,2 = m"A, 0 < (Y < 1. Here we show numerical resultsonly for cr = 0.5. 
i(w)-valuesfor A/J = 0.45 are shown for n = 1000 and n = 1200 J/Tin figures S(a) and 
5(b) ,  respectively. Good similarities between this case and the ZD Ising SG can be seen 
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Figwe3.RefandIm;iversusT/JforcaseIIwithA/J= 1.5,o=21r/20(X),2n/200(A) 
and Zz/2000 (0): (U) n = 1000; (b)  n = 1000 J/T. 
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Figure4.~(log,~r)verruslog,~rforcaseIIaf T/J= 2.2(-),1.4(D), 1 . 0 ( A ) a n d 0 . 6  
(X)wilhA/J= 1 . 5 a n d n -  IOOOJ/T. 

for the magnitude of [Imi(w)J/[Re ~ ( U J ) ]  and the frequency dependence of the peak 
value of Im j ( w ) .  The temperature dependence of n will be discussed in detail in section 
3.2. 

Figure 6 showsg(logIo 2) versus log,,, t at several temperatures when n = 1200J/T. 
These g(loglo 2)-values are markedly similar to the slow parts of g(loglo t) for the ZD 
king SG (see figure 6(a) of SI). 

3.2. Analytical results 

First we calculate f ( w )  analytically from (7) for h, Q w Q A, and examine whether or 
not the LSB relation holds for each of the cases I, I1 and 111. Then we discuss long-time 
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Figure 5. R e t  and Im versus TI3 for case 111 with AiJ = 0.45, w = 0.5, o = h / Z O  (x). 
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Figure6. g(log,, T) venuslog,, r for case 111 at TI3 = 2.2(-). 1.4(0). 1.0 ( A )  and0.8 
(x)withA/J=0.45,rr=0.5andn = EWJ/T. 

behaviour of C(r) for A;' % I %  A;' using the fluctuation dissipation theorem (FDT), 
C(w) = (2T/w) Im,y(w). We also study the temperature dependence of the average 
relaxation time 7," =I; dr Tg(7). 

From (6) and (7). i ( w )  and 7," are expressed by 

1 "  Am ; i (w) = - c 
nT,=, A, - iw 
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where we assume that n is an integer so large that the factor 1 - 2-" in (6)  can be 
neglected, and the 2-" t e r m  can also be neglected, unless only first a few terms in the 
sum make dominant contributions. The condition that the 2-m terms can be neglected 
in the calculation of A(@) is > Az > . . . 2- w ,  and hereafter we concentrate on only 
the case when AI > A, > . . . 2- w B .  . . >An-, >Aa. 
3.2.1. Case I: A, = mA. From (2), Am is given by 

Substituting (10) into (8) and converting the sum to an integral 
(E;=,.. . + J y d x . .  .),f(w)isgivenby 

R"*')/(l - R) R = exp( - A/T). (10) a, (2R" - Rmi' - 

- 1 R'(2-R) 1 - Rntl/z 
. , f ( w ) = - I  "InR R(Z-R)  dz z - R"+I - iw(1 - R) 

using an integration variable z = (2 - R)RX. The R"+I/z term in the integrand can be 
neglected for A, 9 w SA., and finally we obtain 
f ( w )  = (l/nA){ln[R(2 - R)/(1 - R)] - In(-iw)} 

This result reveals two important properties. 
= (l/nA){ln[R(2 - R)/(1 - R)] - In o + i(z/2)}. (11) 

(a)  The LSB relation holds exactly for A I  2- w % An. 
(b) Im i ( w )  exhibits no frequency dependence for A, B w % An. 
From (b) and the FDT C ( w )  = (2T/w) Imi(w) ,  we see that the fluctuation spectrum 

of the magnetization exhibits l/f-noise behaviour, and the long-time behaviour of C(t)  
is the In f relaxation because C(r) = J'l'dw C(w) = C1 - C, In 1. The condition w 2- A, 
is satisfied in the low temperature, and (11) almost coincides with the numerical results 
in section 3.1 below the temperature at which Im i ( w )  exhibits a peak. 

By performing a similar calculation, r,, is given by 
r ,  = [T(1 - R)/nAR] ln[(2 - R)/(2 - 2R)] exp(nA/T). (12) 

If we assume that n = n o J / ( T -  Tc),  where no is a constant, for which a ( w )  in the 3D 
king SG can be reproduced more accurately, we obtain a Vogel-Fulcher-like form 
r,, = exp[n,JA/T(T - TJ]. 

3.2.2. Case 11: A, = A In m. This case corresponds to neither the 3D Ising SG nor the ZD 
king SG, and so we simply describe only the results. As pointed out by os, when A/ 
T G  1, (d(t))  does not converge in the limit n -  50, and therefore we assume that A/ 
T >  1. For frequencies in the range A I S  w 2- A,, it is shown that Ima(w) = l /w, and 
the LSE relation does not hold, as easily expected from the narrowness of the peak width 
ofg(loglo r )  as shown in figure 4 (Lundgren ef a1 1981). The long-time relaxation of C(t) 
is proportional to f in the narrow range A;' % t B A;'. 
3.2.3. Case 111: A, = m"A, 0 < (Y < 1. First we give an approximate expression for Am 
to estimate the sums of (8) and (9). Substituting a,,, = Rm" into (2) and converting the 
sum to an integral, we obtain 

A, = R"" + 1'. d x ~ ~ " .  (13) 
m 

Replacing the variable x by z = x'ln R ,  we estimate the integral in (13) as 
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where 6 ,  
integration. When n 9 m % 1, A,,, isgiven by 

WhenA, 9 w*A,andaisnot toosmall, themaincontnbutionsin(S)and(9)wiIlcome 
from summations in the range m, n - m 9 1. Therefore we approximately use (15) for 
A,,, in the following calculations. 

We first calculate the AC susceptibility. Substituting (15) into (8) and converting the 
sum to an integral, we obtain 

(16) 

T Shirakura and S Inawarhiro 

- l / ( a In  R) = T/&A and the last equality in (14) is derived by partial 

A, = blml-*R"".  (15) 

xl-CRx" 
, , . .,. ,. ,. ,_-.._ ~~ 

1 "  
j x w )  =gi, *xI-mRX" _ '  ~ w l b  L . 

As we could not evaluate the integral 
Xl -nRxa  

~~~~ ~~~ ~ ~~ ~ ~ ~ ~ ~ 
~~ ~~ ~ 

f l u )  fl" dYXI-.RXm + a 

analytically, weestimate it  numerically forR % a 9 nl-#Rn e. Weobtained, forexample. 
f ( a )  = - c?, In a + E,(ln a)* for (Y = $ andf(a) = - f, In a + ?,(In a)' - ?,(In a)'for (Y = 
f. From these results we expect thatf(a) is well described in a form of kth polynomials 
of In a for (Y = l/k. Hereafter we assume that this expectation is correct. 

Comparing these results with those of the Mcsimulation by SSI. we find that f ( w )  in 
the ZD king SG can be better reproduced for (Y = 1 for the following two reasons. 

(i) At low temperatures Im2(w) obtained by the MC simulation can be roughly 
regarded as Im i ( w )  = cI - ct In w (cl, c2 > 0). This corresponds to the case when (Y = 
1in(16). 

(ii) In the MC simulation, the LSB relation well holds in the 2D king SG as well as in 
the3~Isingsc(Suzukieral1991).Thereareonlytwocases,or= 1 a n d a =  &,wherethe 
LSB relation exactly holds in our calculation (the terms, proportional to [In(-iw)]', 
[In( -iw)I4, , . . , which violate the LSB relation appear for (Y = l/k, k 3 3). This also 
supports (Y = 4. 

Therefore, assuming that (Y = 1, we consider the temperature dependence ofn in the 
:D Ising SG, comparing the above results with those of Ss1. From ~~ the least-squares fitting 
for R-values in the range 0.65 > R > 0.4, we obtained 

f ( a ) =  -4.55(-I/lnR)Z~7'lna + 1.196(-l/lnR)'.785(lna)2. 
This suggests a functional form,f(a) = - t1T3 In a + f2T2(lna)*, where f ,  and f2  are 
positive constants. Then, assuming this and n = no/T6, we obtain from (16) 

Im;i(w) = (T6-'/nu) Imf(-iw/bl) = ( X T ~ - ~ / ~ ~ U ) [ E I T ~  - 2S2TZ In(w/bl)]. (17) 

From (17) the coefficient of In w in Im?(W) is proportional to We estimate 
that 0 G 6 < 1 from the temperature dependence of the coefficient of In w in Im2(w) 
obtained by SSI in the 2D Ising sG, although it is difficult to determine 6 accuratelyowing 
to large scatter in the data. 

Asforthe long-timerelaxation ofC(t), itisshownfrom C(t) = J'/'dw(2T/w) Im ~ ( w )  
and Imf (u )  = cl - c2 In w that C(f ) /N  = co - 2Tc, In f - Tc,(ln r)'. 

Finally we evaluate the average relaxation time z,. Substituting (15) into (9) and 
converting the sum to an integral, we obtain 

If we assume that n = nu/T6, T,, follows the generalized Arrhenius law 
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z,, = Td exp(npA/T'), where U = 1 + 601. From the above results (01 = 4 and 
OS 6 <  l),weobtainl S U <  1.5.Thisvalueofoisconsistentwiththatobtainedbyss1 
for the 2D king SG. 

4. Discussion 

First we compare our results with those of Sibani and discuss the origin of the difference 
between them. On the basis of an assumption different from (3), Sibani (1987) obtained 
a correlation function C ( f )  and AC susceptibilities similar to rhose for case 11. Further he 
showed that the LSE relation holds only in the limit z+ 1. On the other hand, we show 
in this paper that f ( w )  in the ZD and 3D J king SGS can be reproduced in the os model 
on the basis of assumption (3). It is shown that the difference between the 3~ and ZD 
systemscorrespondsto adifference in thescalingoffree-energy barriers with ultrametric 
distance, i.e. a difference between k = 1 and 2 in Am = m'IkA, and that the LSE relation 
holds exactly for both cases k = 1 and k = 2 with a large enough number of levels n % 1 
and& %- o %An. 

Thus our results are a better approximation for the real experimental results than 
Sibani's results. We think that these differences come from the use of different assump 
tions. These assumptions are roughly expressed as follows: our assumption is 

and Sibani's assumption is 

where L > 1. In Sibani's expression for C(t ) ,  only the terms with a few d(k ,  0) close to n 
contribute relevantly to the relaxation of C(t) ,  except for the limit z+ 1. This makes 
the density of the slowest part ofg(loglo T) considerably larger thanour value. Therefore 
it is supposed that in Sibani's assumption a peak width of g(logl0 z) large enough to 
reproduce the experimental AC susceptibilities could not be made even at low tem- 
peratures. 

In this paper, we express the correlation function C(r) by means of the average 
ultrametric distance (d( t ) )  using (3) and get good agreement between the present results 
and those in the previous MC simulation. There remains, however, one difficulty to be 
overcome in order to reduce the dynamics in the 3~ * J king SG to the dynamics in case 
I. This is the temperature of the phase transition and the behaviour of the temperature 
dependence of raV. At present as the result of large-scale simulations in both space and 
time (Ogielski 1985, Bhatt and Young 1985), it is believed that the phase transition 
temperature T8inthe3D C JIsingsGisT,/J = 1.175 i 0.025andr,,exhibitsadivergent 
behaviour near Tg according to the power law. On the other hand, if we assume that 
n 0~ 1/(T - T,) in case I which reproduces the best t ( w )  for the 3D king S G ,  the phase 
transition temperature could be regarded as TC(=0.2J) and z, exhibits a divergent 
behaviour near T, according to a Vogel-Fulcher-like law. 

In order to overcome this difficulty, there are several possibilities to be considered. 
(1) There is the possibility that the dynamics on a time scale investigated for j ( w )  by 

SSI could be essentially different from those on a long-time scale near and below the 
critical temperature. 



3194 T Shirakura and S Inawashiro 

(2) The model of the dynamics in an ultrametric space used in this paper is the 
simplest. There might be the possibility that another more complicated model of 
dynamics in an ultrametric space could overcome this difficulty. 

Because of possibility (Z), the characteristic properties in a variety of models of 
dynamics in an ultrametric space should be studied. In order to investigate possibility 
(1). ~~susceptibilitieswithlongercyclesshouldbestudied by the ~Csimulationinlarger 
systems. If possibility (1) were true, we might observe a crossover behaviour for small 
frequenciesfrom Im ~ ( w )  = constant found by SSI to Im ~ ( w )  Iln ol-"+"~)predicted 
by Fisher and Huse (1986,1988), based on an ansa& for the scalingof low-lying large- 
scale droplet excitations. 
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